Frames, Young tableaux, and Baxter sequences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Young tableaux and other mutually describing sequences

We introduce a transformation on integer sequences for which the set of images is in bijective correspondence with the set of Young tableaux. We use this correspondence to show that the set of images, known as ballot sequences, is also the set of double points of our transformation. In the second part, we introduce other transformations of integer sequences and show that, starting from any sequ...

متن کامل

Bessel Subfusion Sequences and Subfusion Frames

Fusion frames are a generalized form of frames in Hilbert spaces. In the present paper we introduce Bessel subfusion sequences and subfusion frames and we investigate the relationship between their operation. Also, the definition of the orthogonal complement of subfusion frames and the definition of the completion of Bessel fusion sequences are provided and several results related with these no...

متن کامل

Promotion of Increasing Tableaux: Frames and Homomesies

A key fact about M.-P. Schützenberger’s (1972) promotion operator on rectangular standard Young tableaux is that iterating promotion once per entry recovers the original tableau. For tableaux with strictly increasing rows and columns, H. Thomas and A. Yong (2009) introduced a theory of K-jeu de taquin with applications to K-theoretic Schubert calculus. The author (2014) studied a K-promotion op...

متن کامل

Young tableaux

This paper gives a qualitative description how Young tableaux can be used to perform a Clebsch-Gordan decomposition of tensor products in SU(3) and how this can be generalized to SU(N).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1977

ISSN: 0001-8708

DOI: 10.1016/0001-8708(77)90042-1